Skip to main content

2 posts tagged with "apache-spark"

View All Tags

· 6 min read
Jeffrey Aven

Apache Spark in GCP

In the previous post in this series Spark in the Google Cloud Platform Part 1, we started to explore the various ways in which we could deploy Apache Spark applications in GCP. The first option we looked at was deploying Spark using Cloud DataProc, a managed Hadoop cluster with various ecosystem components included.

In this post, we will look at another option for deploying Spark in GCP – a Spark Standalone cluster running on GKE.

Spark Standalone refers to the in-built cluster manager provided with each Spark release. Standalone can be a bit of a misnomer as it sounds like a single instance – which it is not, standalone simply refers to the fact that it is not dependent upon any other projects or components – such as Apache YARN, Mesos, etc.

A Spark Standalone cluster consists of a Master node or instance and one of more Worker nodes. The Master node serves as both a master and a cluster manager in the Spark runtime architecture.

The Master process is responsible for marshalling resource requests on behalf of applications and monitoring cluster resources.

The Worker nodes host one or many Executor instances which are responsible for carrying out tasks.

Deploying a Spark Standalone cluster on GKE is reasonably straightforward. In the example provided in this post we will set up a private network (VPC), create a GKE cluster, and deploy a Spark Master pod and two Spark Worker pods (in a real scenario you would typically have many Worker pods).

Once the network and GKE cluster have been deployed, the first step is to create Docker images for both the Master and Workers.

The Dockerfile below can be used to create an image capable or running either the Worker or Master daemons:

Note the shell scripts included in the Dockerfile: spark-master and spark-worker. These will be used later on by K8S deployments to start the relative Master and Worker daemon processes in each of the pods.

Next, we will use Cloud Build to build an image using the Dockerfile are store this in GCR (Google Container Registry), from the Cloud Build directory in our project we will run:

gcloud builds submit --tag gcr.io/spark-demo-266309/spark-standalone

Next, we will create Kubernetes deployments for our Master and Worker pods.

Firstly, we need to get cluster credentials for our GKE cluster named ‘spark-cluster’:

gcloud container clusters get-credentials spark-cluster --zone australia-southeast1-a --project spark-demo-266309

Now from within the k8s-deployments\deploy folder of our project we will use the kubectl command to deploy the Master pod, service and the Worker pods

Starting with the Master deployment, this will deploy our Spark Standalone image into a container running the Master daemon process:

To deploy the Master, run the following:

kubectl create -f spark-master-deployment.yaml

The Master will expose a web UI on port 8080 and an RPC service on port 7077, we will need to deploy a K8S service for this, the YAML required to do this is shown here:

To deploy the Master service, run the following:

kubectl create -f spark-master-service.yaml

Now that we have a Master pod and service up and running, we need to deploy our Workers which are preconfigured to communicate with the Master service.

The YAML required to deploy the two Worker pods is shown here:

To deploy the Worker pods, run the following:

kubectl create -f spark-worker-deployment.yaml

You can now inspect the Spark processes running on your GKE cluster.

kubectl get deployments

Shows...

NAME           READY   UP-TO-DATE   AVAILABLE   AGE
spark-master 1/1 1 1 7m45s
spark-worker 2/2 2 2 9s
kubectl get pods

Shows...

NAME                            READY   STATUS    RESTARTS   AGE
spark-master-f69d7d9bc-7jgmj 1/1 Running 0 8m
spark-worker-55965f669c-rm59p 1/1 Running 0 24s
spark-worker-55965f669c-wsb2f 1/1 Running 0 24s

Next, as we need to expose the Web UI for the Master process we will create a LoadBalancer resource. The YAML used to do this is provided here:

To deploy the LB, you would run the following:

kubectl create -f spark-ui-lb.yaml

NOTE This is just an example, for simplicity we are creating an external LoadBalancer with a public IP, this configuration is likely not be appropriate in most real scenarios, alternatives would include an internal LoadBalancer, retraction of Authorized Networks, a jump host, SSH tunnelling or IAP.

Now you’re up and running!

You can access the Master web UI from the Google Console link shown here:

Accessing the Spark Master UI from the Google Cloud Console

The Spark Master UI should look like this:

Spark Master UI

Next we will exec into a Worker pod, get a shell:

kubectl exec -it spark-worker-55965f669c-rm59p -- sh

Now from within the shell environment of a Worker – which includes all of the Spark client libraries, we will submit a simple Spark application:

spark-submit --class org.apache.spark.examples.SparkPi \
--master spark://10.11.250.98:7077 \
/opt/spark/examples/jars/spark-examples*.jar 10000

You can see the results in the shell, as shown here:

Spark Pi Estimator Example

Additionally, as all of the container logs go to Stackdriver, you can view the application logs there as well:

Container Logs in StackDriver

This is a simple way to get a Spark cluster running, it is not without its downsides and shortcomings however, which include the limited security mechanisms available (SASL, network security, shared secrets).

In the final post in this series we will look at Spark on Kubernetes, using Kubernetes as the Spark cluster manager and interacting with Spark using the Kubernetes API and control plane, see you then.

Full source code for this article is available at: https://github.com/gamma-data/spark-on-gcp

The infrastructure coding for this example uses Powershell and Terraform, and is deployed as follows:

PS > .\run.ps1 private-network apply <gcp-project> <region>
PS > .\run.ps1 gke apply <gcp-project> <region>

if you have enjoyed this post, please consider buying me a coffee ☕ to help me keep writing!

· 6 min read
Jeffrey Aven

Apache Spark in GCP

I have been an avid Spark enthusiast since 2014 (the early days..). Spark has featured heavily in every project I have been involved with from data warehousing, ETL, feature extraction, advanced analytics to event processing and IoT applications. I like to think of it as a Swiss army knife for distributed processing.

Curiously enough, the first project I had been involved with for some years that did not feature the Apache Spark project was a green field GCP project which got me thinking… where does Spark fit into the GCP landscape?

Unlike the other major providers who use Spark as the backbone of their managed distributed ETL services with examples such as AWS Glue or the Spark integration runtime option in Azure Data Factory, Google’s managed ETL solution is Cloud DataFlow. Cloud DataFlow which is a managed Apache Beam service does not use a Spark runtime (there is a Spark Runner however this is not an option when using CDF). So where does this leave Spark?

My summation is that although Spark is not a first-class citizen in GCP (as far as managed ETL), it is not a second-class citizen either. This article will discuss the various ways Spark clusters and applications can be deployed within the GCP ecosystem.

Quick Primer on Spark

Every Spark application contains several components regardless of deployment mode, the components in the Spark runtime architecture are:

  • the Driver
  • the Master
  • the Cluster Manager
  • the Executor(s), which run on worker nodes or Workers

Each component has a specific role in executing a Spark program and all of the Spark components run in Java virtual machines (JVMs).

Spark Runtime Architecture

Cluster Managers schedule and manage distributed resources (compute and memory) across the nodes of the cluster. Cluster Managers available for Spark include:

  • Standalone
  • YARN (Hadoop)
  • Mesos
  • Kubernetes

Spark on DataProc

This is perhaps the simplest and most integrated approach to using Spark in the GCP ecosystem.

DataProc is GCP’s managed Hadoop Service (akin to AWS EMR or HDInsight on Azure). DataProc uses Hadoop/YARN as the Cluster Manager. DataProc clusters can be deployed on a private network (VPC using RFC1918 address space), supports encryption at Rest using Google Managed or Customer Managed Keys in KMS, supports autoscaling and the use of Preemptible Workers, and can be deployed in a HA config.

Furthermore, DataProc clusters can enforce strong authentication using Kerberos which can be integrated into other directory services such as Active Directory through the use of cross realm trusts.

Deployment

DataProc clusters can be deployed using the gcloud dataproc clusters create command or using IaC solutions such as Terraform. For this article I have included an example in the source code using the gcloud command to deploy a DataProc cluster on a private network which was created using Terraform.

Integration

The beauty of DataProc is its native integration into IAM and the GCP service plane. Having been a long-time user of AWS EMR, I have found that the usability and integration are in many ways superior in GCP DataProc. Let’s look at some examples...

IAM and IAP (TCP Forwarding)

DataProc is integrated into Cloud IAM using various coarse grained permissions use as dataproc.clusters.use and simplified IAM Roles such as dataproc.editor or dataproc.admin. Members with bindings to the these roles can perform tasks such as submitting jobs and creating workflow templates (which we will discuss shortly), as well as accessing instances such as the master node instance or instances in the cluster using IAP (TCP Forwarding) without requiring a public IP address or a bastion host.

DataProc Jobs and Workflows

Spark jobs can be submitted using the console or via gcloud dataproc jobs submit as shown here:

Submitting a Spark Job using gcloud dataproc jobs submit

Cluster logs are natively available in StackDriver and standard out from the Spark Driver is visible from the console as well as via gcloud commands.

Complex Workflows can be created by adding Jobs as Steps in Workflow Templates using the following command:

gcloud dataproc workflow-templates add-job spark

Optional Components and the Component Gateway

DataProc provides you with a Hadoop cluster including YARN and HDFS, a Spark runtine – which includes Spark SQL and SparkR. DataProc also supports several optional components including Anaconda, Jupyter, Zeppelin, Druid, Presto, and more.

Web interfaces to some of these components as well as the management interfaces such as the Resource Manager UI or the Spark History Server UI can be accessed through the Component Gateway.

This is a Cloud IAM integrated gateway (much like IAP) which can allow access through an authenticated and authorized console session to web UIs in the cluster – without the need for SSH tunnels, additional firewall rules, bastion hosts, or public IPs. Very cool.

Links to the component UIs as well as built in UIs like the YARN Resource Manager UI are available directly from through the console.

Jupyter

Jupyter is a popular notebook application in the data science and analytics communities used for reproducible research. DataProc’s Jupyter component provides a ready-made Spark application vector using PySpark. If you have also installed the Anaconda component you will have access to the full complement of scientific and mathematic Python packages such as Pandas and NumPy which can be used in Jupyter notebooks as well. Using the Component Gateway, Jupyer notebooks can be accessed directly from the Google console as shown here:

Jupyter Notebooks using DataProc

From this example you can see that I accessed source data from a GCS bucket and used HDFS as local scratch space.

Furthermore, notebooks are automagically saved in your integrated Cloud Storage DataProc staging bucket and can be shared amongst analysts or accessed at a later time. These notebooks also persist beyond the lifespan of the cluster.

Next up we will look at deploying a Spark Standalone cluster on a GKE cluster, see you then!

if you have enjoyed this post, please consider buying me a coffee ☕ to help me keep writing!